If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7=100
We move all terms to the left:
3x^2+7-(100)=0
We add all the numbers together, and all the variables
3x^2-93=0
a = 3; b = 0; c = -93;
Δ = b2-4ac
Δ = 02-4·3·(-93)
Δ = 1116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1116}=\sqrt{36*31}=\sqrt{36}*\sqrt{31}=6\sqrt{31}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{31}}{2*3}=\frac{0-6\sqrt{31}}{6} =-\frac{6\sqrt{31}}{6} =-\sqrt{31} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{31}}{2*3}=\frac{0+6\sqrt{31}}{6} =\frac{6\sqrt{31}}{6} =\sqrt{31} $
| 9n=28 | | v^2−88=–63 | | 2=9.25/h | | 6(t-2.50)=96 | | -1+r/2=-10 | | 2=9.25d | | n-(-27)=-34 | | J(x)=17 | | Y=3x-4;x=3 | | 2=9.25h | | 6(t−2.50)=96 | | -7+9m=-97 | | 5(x+3)=3(x+9)= | | 3-9x=-8x+9 | | 2x+4=-6(3-4x) | | -1+m/2=-6 | | 6(c-1)=48 | | 11(p-3)=5(+3) | | 6.5+k=-5.5 | | 2x+1+23=180 | | 88.7−t=22.8 | | 20÷h=5 | | 9t=25 | | -10k+9=209 | | t/9=25 | | x*13/2=15 | | D)9x+4–x=4(2x+1) | | X^2-14x-9=6 | | 12=5n-(-8) | | 7z=59;z=7 | | 9y+3-5y=8+2y | | -2=m⁄16 |